Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Reports ; 16(9): 2242-2256, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34525384

RESUMO

Gene therapies using adeno-associated viruses (AAVs) are among the most promising strategies to treat or even cure hereditary and acquired retinal diseases. However, the development of new efficient AAV vectors is slow and costly, largely because of the lack of suitable non-clinical models. By faithfully recreating structure and function of human tissues, human induced pluripotent stem cell (iPSC)-derived retinal organoids could become an essential part of the test cascade addressing translational aspects. Organ-on-chip (OoC) technology further provides the capability to recapitulate microphysiological tissue environments as well as a precise control over structural and temporal parameters. By employing our recently developed retina on chip that merges organoid and OoC technology, we analyzed the efficacy, kinetics, and cell tropism of seven first- and second-generation AAV vectors. The presented data demonstrate the potential of iPSC-based OoC models as the next generation of screening platforms for future gene therapeutic studies.


Assuntos
Dependovirus/genética , Vetores Genéticos/genética , Células-Tronco Pluripotentes Induzidas/citologia , Dispositivos Lab-On-A-Chip , Organoides/metabolismo , Retina/metabolismo , Transdução Genética , Biomarcadores , Técnicas de Cultura de Células , Técnicas de Cultura de Células em Três Dimensões , Diferenciação Celular , Imunofluorescência , Expressão Gênica , Genes Reporter , Terapia Genética , Humanos , Organoides/citologia , Retina/citologia , Transgenes
2.
Cells ; 10(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466396

RESUMO

Human induced pluripotent stem cell (hiPSC)-derived endothelial cells (ECs) and pericytes provide a powerful tool for cardiovascular disease modelling, personalized drug testing, translational medicine, and tissue engineering. Here, we report a novel differentiation protocol that results in the fast and efficient production of ECs and pericytes from keratinocyte-derived hiPSCs. We found that the implementation of a 3D embryoid body (EB) stage significantly improves the differentiation efficiency. Compared with the monolayer-based technique, our protocol yields a distinct EC population with higher levels of EC marker expression such as CD31 and vascular endothelial cadherin (VE-cadherin). Furthermore, the EB-based protocol allows the generation of functional EC and pericyte populations that can promote blood vessel-like structure formation upon co-culturing. Moreover, we demonstrate that the EB-based ECs and pericytes can be successfully used in a microfluidic chip model, forming a stable 3D microvascular network. Overall, the described protocol can be used to efficiently differentiate both ECs and pericytes with distinct and high marker expression from keratinocyte-derived hiPSCs, providing a potent source material for future cardiovascular disease studies.


Assuntos
Antígenos de Diferenciação/metabolismo , Células Endoteliais/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Queratinócitos/metabolismo , Pericitos/metabolismo , Células Endoteliais/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Queratinócitos/citologia , Masculino , Pericitos/citologia
3.
Cells ; 8(5)2019 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-31035373

RESUMO

Human induced pluripotent stem cell (hiPSC)-derived organoids mimicking tissues and organs in vitro have advanced medical research, as they opened up new possibilities for in-depth basic research on human organ development as well as providing a human in vitro model for personalized therapeutic approaches. hiPSC-derived retinal organoids have proven to be of great value for modeling the human retina featuring a very similar cellular composition, layering, and functionality. The technically challenging imaging of three-dimensional structures such as retinal organoids has, however, raised the need for robust whole-organoid imaging techniques. To improve imaging of retinal organoids we optimized a passive clearing technique (PACT), which enables high-resolution visualization of fragile intra-tissue structures. Using cleared retinal organoids, we could greatly enhance the antibody labeling efficiency and depth of imaging at high resolution, thereby improving the three-dimensional microscopy output. In that course, we were able to identify the spatial morphological shape and organization of, e.g., photoreceptor cells and bipolar cell layers. Moreover, we used the synaptic protein CtBP2/Ribeye to visualize the interconnection points of photoreceptor and bipolar cells forming the retinal-specific ribbon synapses.


Assuntos
Células-Tronco Pluripotentes Induzidas/ultraestrutura , Organoides , Células Fotorreceptoras/ultraestrutura , Retina/ultraestrutura , Oxirredutases do Álcool/química , Técnicas de Cultura de Células/métodos , Proteínas Correpressoras/química , Humanos , Técnicas de Cultura de Órgãos/métodos , Organoides/crescimento & desenvolvimento , Organoides/ultraestrutura , Engenharia Tecidual/métodos
4.
Stem Cell Res ; 30: 180-191, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29957443

RESUMO

ROS are frequently associated with deleterious effects caused by oxidative stress. Despite the harmful effects of non-specific oxidation, ROS also function as signal transduction molecules that regulate various biological processes, including stem cell proliferation and differentiation. Here we show that mitochondrial ROS level determines cell fate during differentiation of the pluripotent stem cell line P19. As stem cells in general, P19 cells are characterized by a low respiration activity, accompanied by a low level of ROS formation. Nevertheless, we found that P19 cells contain fully assembled mitochondrial electron transport chain supercomplexes (respirasomes), suggesting that low respiration activity may serve as a protective mechanism against ROS. Upon elevated mitochondrial ROS formation, the proliferative potential of P19 cells is decreased due to longer S phase of the cell cycle. Our data show that besides being harmful, mitochondrial ROS production regulates the differentiation potential of P19 cells: elevated mitochondrial ROS level favours trophoblast differentiation, whereas preventing neuron differentiation. Therefore, our results suggest that mitochondrial ROS level serves as an important factor that directs differentiation towards certain cell types while preventing others.


Assuntos
Mitocôndrias/metabolismo , Células-Tronco Pluripotentes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...